没有公告

 | 网站首页 | 头条 | 摄影 | 茶文化 | 技术 | 饮食 | 教育 | 军事 | 天昊电梯 | 
专题栏目
相关文章
没有相关教育
您现在的位置: 4567官网 >> 教育 >> 初中教育 >> 阅读与作文 >> 正文
莫比乌斯
作者:4567 文章来源:本站原创 点击数:165 更新时间:2010-12-2 22:30:26

百科名片

  
莫比乌斯带

莫比乌斯 全名:奥古斯特·费迪南德·莫比乌斯(August FerdiUs MobiUs,1790-1868年)是德国数学家、天文学家。

目录

人物生平
成就及荣誉
创作故事
其他相关

编辑本段人物生平

  
  

1790年11月17日生于德国瑙姆堡附近的舒尔福塔。1808年入莱比锡大学学习法律,后转攻数学、物理和天文。1814年获博士学位,1816年任副教授,1829年当选为柏林科学院通讯院士,1844年任莱比锡大学天文与高等力学教授。1868年9月26日卒于莱比锡。

编辑本段成就及荣誉

  莫比乌斯的科学贡献涉及天文和数学两大领域。在数学方面,首先是他对19世纪射影几何学的影响。莫比乌斯发展了射影几何学的代数方法。他在《重心计算》(1827年)一书中,创立了代数射影几何的基本概念------齐次坐标。在同一著作中他还揭示了对偶原理与配极之间的关系,并对交比概念给出了完善的处理。莫比乌斯带(1858年)。他较早对拓扑学作深入的探讨并给出恰当的提法。此外,莫比乌斯对球面三角等其它数学分支也有重要贡献。

编辑本段创作故事

  
  

公元1858年,莫比乌斯发现:把一个扭转180°后再两头粘接起来的纸条,具有魔术般的性质。
  因为,普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘!
  我们把这种由莫比乌斯发现的神奇的单面纸带,称为“莫比乌斯带”。
  拿一张白的长纸条,把一面涂成黑色,然后把其中一端翻一个身,如同上页图那样粘成一个莫比乌斯带。现在像图中那样用剪刀沿纸带的中央把它剪开。你就会惊奇地发现,纸带不仅没有一分为二,反而像图中那样剪出一个两倍长的纸圈!
  有趣的是:新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起!为了让读者直观地看到这一不太容易想象出来的事实,我们可以把上述纸圈,再一次沿中线剪开,这回可真的一分为二了!得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。
  比如旋转三个半圈的带子再剪开后会形成一个三叶结。剪开带子之后再进行旋转,然后重新粘贴则会变成数个Paradromic。
  莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。
  莫比乌斯带还有更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在莫比乌斯带上获得了解决!
  比如在普通空间无法实现的“手套易位问题:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套!不过,倘若自你把它搬到莫比乌斯带上来,那么解决起来就易如反掌了。”
  在自然界有许多物体也类似于手套那样,它们本身具备完全相像的对称部分,但一个是左手系的,另一个是右手系的,它们之间有着极大的不同。
  下面的图是一个管子旋转180度连接,中间一根管子旋转90度安装在两头,就是一个亏格为2时8个区域两两相连。林格尔(G.Ringel)和杨斯(F.YOUNGS)1974年证明:Np=[(7+√1+48P)/2],P=2时,N2=8。就是下图。
  
  

29

编辑本段其他相关

  “莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带就不会只磨损一面了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。
  莫比乌斯带是一种拓扑图形,什么是拓扑呢?拓扑所研究的是几何图形的一些性质,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。换句话说,这种变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。这样的变换叫做拓扑变换。拓扑有一个形象说法——橡皮几何学。因为如果图形都是用橡皮做成的,就能把许多图形进行拓扑变换。例如一个橡皮圈能变形成一个圆圈或一个方圈。但是一个橡皮圈不能由拓扑变换成为一个阿拉伯数字8。因为不把圈上的两个点重合在一起,圈就不会变成8,“莫比乌斯带”正好满足了上述要求。
  

右下角是三角形麦比乌斯带,左端绿色与右端黄色相连,扭曲的三角形麦比乌斯带可以不断循环:绿--黄---红---绿---黄---,,,。

免责声明:作品版权归所属媒体与作者所有! 本站刊载此文不代表同意其说法或描述,仅为提供更多信息。如果您认为我们侵犯了您的版权,请告知!本站立即删除。有异议请联系我们。
教育录入:admin    责任编辑:admin 
网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)
| 设为首页 | 加入收藏 | 联系站长 | 友情链接 | 版权申明 | 网站公告